13,763 research outputs found

    Library Search UX report summer 2016

    Get PDF
    During Summer 2016, Imperial College London's Library Information Systems team ran a round of user experience research into the information-seeking behaviour of undergraduate and postgraduate students with a specific focus on the use of the library catalogue and discovery interface. The purpose of the work was to understand user behaviours and preferences to target development of practical improvements to the Library Search interface

    Metamodelling of multivariable engine models for real-time flight simulation.

    Get PDF
    Sophisticated real-time distributed flight simulation environments may be constructed from a wide range of modelling and simulation tools. In this way accuracy, detail and model flexibility may be incorporated into the simulator. Distributed components may be constructed by a wide range of methods, from high level environments such as Matlab, through coded environments such as C or Fortran to hardware-in-the- loop. In this paper the Response Surface Methodology is combined with a hyper-heuristic (evolutionary algorithm) and applied to the representation of computationally intensive non-linear multivariable engine modelling. The paper investigates the potential for metamodelling (models of models) dynamic models which were previously too slow to be included in multi-component, high resolution real-time simulation environments. A multi-dimensional gas turbine model with five primary control inputs, six environmental inputs and eleven outputs is considered. An investigation has been conducted to ascertain to what extent these systems can be approximated by response surfaces with experiments which have been designed by hyper-heuristics as a first step towards automatic modelling methodology

    Perfect separation of intraband and interband excitations in PdCoO2_2

    Full text link
    The temperature dependence of the optical properties of the delafossite PdCoO2_2 has been measured in the a-b planes over a wide frequency range. The optical conductivity due to the free-carrier (intraband) response falls well below the interband transitions, allowing the plasma frequency to be determined from the ff-sum rule. Drude-Lorentz fits to the complex optical conductivity yield estimates for the free-carrier plasma frequency and scattering rate. The in-plane plasma frequency has also been calculated using density functional theory. The experimentally-determined and calculated values for the plasma frequencies are all in good agreement; however, at low temperature the optically-determined scattering rate is much larger than the estimate for the transport scattering rate, indicating a strong frequency-dependent renormalization of the optical scattering rate. In addition to the expected in-plane infrared-active modes, two very strong features are observed that are attributed to the coupling of the in-plane carriers to the out-of-plane longitudinal optic modes.Comment: 7 pages with five figures and three tables; 4 pages of supplementary materia

    Pressure study of nematicity and quantum criticality in Sr3_3Ru2_2O7_7 for an in-plane field

    Get PDF
    We study the relationship between the nematic phases of Sr3_3Ru2_2O7_7 and quantum criticality. At ambient pressure, one nematic phase is associated with a metamagnetic quantum critical end point (QCEP) when the applied magnetic field is near the \textit{c}-axis. We show, however, that this metamagnetic transition does not produce the same nematic signatures when the QCEP is reached by hydrostatic pressure with the field applied in the \textit{ab}-plane. Moreover, a second nematic phase, that is seen for field applied in the \textit{ab}-plane close to, but not right at, a second metamagnetic anomaly, persists with minimal change to the highest applied pressure, 16.55 kbar. Taken together our results suggest that metamagnetic quantum criticality may not be necessary for the formation of a nematic phase in Sr3_3Ru2_2O7_7

    Detailed Topography of the Fermi Surface of Sr2RuO4

    Full text link
    We apply a novel analysis of the field and angle dependence of the quantum-oscillatory amplitudes in the unconventional superconductor Sr2RuO4 to map its Fermi surface in unprecedented detail, and to obtain previously inaccessible information on the band dispersion. The three quasi-2D Fermi surface sheets not only exhibit very diverse magnitudes of warping, but also entirely different dominant warping symmetries. We use the data to reassess recent results on c-axis transport phenomena.Comment: REVTeX, 4 page

    Improving route discovery in on-demand routing protocols using local topology information in MANETs

    Get PDF
    Most existing routing protocols proposed for MANETs use flooding as a broadcast technique for the propagation of network control packets; a particular example of this is the dissemination of route requests (RREQs), which facilitate route discovery. In flooding, each mobile node rebroadcasts received packets, which, in this manner, are propagated network-wide with considerable overhead. This paper improves on the performance of existing routing protocols by reducing the communication overhead incurred during the route discovery process by implementing a new broadcast algorithm called the adjusted probabilistic flooding on the Ad-Hoc on Demand Distance Vector (AODV) protocol. AODV [3] is a well-known and widely studied algorithm which has been shown over the past few years to maintain an overall lower routing overhead compared to traditional proactive schemes, even though it uses flooding to propagate RREQs. Our results, as presented in this paper, reveal that equipping AODV with fixed and adjusted probabilistic flooding, instead, helps reduce the overhead of the route discovery process whilst maintaining comparable performance levels in terms of saved rebroadcasts and reachability as achieved by conventional AODV\@. Moreover, the results indicate that the adjusted probabilistic technique results in better performance compared to the fixed one for both of these metrics

    Formation of a Nematic Fluid at High Fields in Sr3Ru2O7

    Get PDF
    In principle, a complex assembly of strongly interacting electrons can self-organise into a wide variety of collective states, but relatively few such states have been identified in practice. We report that, in the close vicinity of a metamagnetic quantum critical point, high purity Sr3Ru2O7 possesses a large magnetoresistive anisotropy, consistent with the existence of an electronic nematic fluid. We discuss a striking phenomenological similarity between our observations and those made in high purity two-dimensional electron fluids in GaAs devices.Comment: 14 pages, 3 figures, 11 extra pages of supplementary informatio

    Muon-spin rotation measurements of the vortex state in Sr2_2RuO4_4: type-1.5 superconductivity, vortex clustering and a crossover from a triangular to a square vortex lattice

    Get PDF
    Muon-spin rotation has been used to probe vortex state in Sr2_2RuO4_4. At moderate fields and temperatures a lattice of triangular symmetry is observed, crossing over to a lattice of square symmetry with increasing field and temperature. At lower fields it is found that there are large regions of the sample that are completely free from vortices which grow in volume as the temperature falls. Importantly this is accompanied by {\it increasing} vortex density and increasing disorder within the vortex-cluster containing regions. Both effects are expected to result from the strongly temperature-dependent long-range vortex attractive forces arising from the multi-band chiral-order superconductivity.Comment: 13 pages, 4 figure

    Cyclotron Resonance in the Layered Perovskite Superconductor Sr2RuO4

    Full text link
    We have measured the cyclotron masses in Sr2RuO4 through the observation of periodic-orbit-resonances - a magnetic resonance technique closely related to cyclotron resonance. We obtain values for the alpha, beta and gamma Fermi surfaces of (4.33+/-0.05)me, (5.81+/-0.03)me and (9.71+/-0.11)me respectively. The appreciable differences between these results and those obtained from de Haas- van Alphen measurements are attributable to strong electron-electron interactions in this system. Our findings appear to be consistent with predictions for a strongly interacting Fermi liquid; indeed, semi-quantitative agreement is obtained for the electron pockets beta and gamma.Comment: 4 pages + 3 figure
    corecore